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During the past decade, the development of offshore wind energy has transitioned from near shore with shallow
water to offshore middle-depth water regions. Consequently, the energy conversion technology has shifted from
bottom-fixed wind turbines to floating offshore wind turbines. Floating offshore wind turbines are considered
more suitable, but their cost is still very high. One of the main reasons for this is that the system dynamics
control method is not well-adapted, thereby affecting the performance and reliability of the wind turbine
system. The additional motion of the platform tends to compromise the system’s performance in terms of power
maximization, power regulation, and load mitigation. To provide a recommendation based on the advantages
and disadvantages of different control methods, we systematically analyze feasible control methods for existing
floating offshore wind turbine designs. Based on a brief overview of floating offshore wind turbine system
dynamics, we present several promising control methods by classifying them as blade-pitch-based and mass—
spring—damper-based. Furthermore, we emphasize on the incoming wind and wave forecasting associated with
the control methods. We then compare different methods by evaluating a matrix involving platform motion
minimization, load mitigation, and power regulation and identify the advantages and disadvantages. Finally,
recommendations and suggestions for further research are provided by integrating the advantageous control
algorithm and forecasting technologies to reduce costs.

1. Introduction 1.1. Outlook on offshore wind

Wind energy is one of the leading commercial renewable energy
resources, and it has significant potential in both onshore and offshore
areas [1,2]. Over the last decade, there has been a rapid increase
in global (onshore and offshore) wind power production, as shown
in Fig. 1; the total installed capacity for onshore wind turbines has
increased from 159 to 651 GW. In particular, a record increase in the
annual installed offshore wind energy capacity was reported in 2019.
The new annual offshore installed capacity is estimated to exceed 30
GW by 2030, with a compound annual growth rate of 18.6% for the
first half and 8.2% during the latter half of the decade (Fig. 2).

Offshore wind quality is superior to onshore wind quality, because
offshore wind blows more consistently with a higher annual average
speed [3,4]. The majority of the offshore wind potential is distributed
over areas of water with a depth of more than 60 m, and the percentage
of this resource is up to 80% in Europe [5]. Therefore, there is a
need to develop offshore wind turbines in the ocean. Furthermore,
the offshore wind potential is expected to ease the transition toward
renewable energy resources and maintain the increase in the global
temperature at 1.5 degrees Celsius, according to the recommendation of
the Intergovernmental Panel on Climate Change [6]. Additionally, the
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Nomenclature

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network

AR Auto-Regressive

ARIMA Auto-Regressive Integral Moving Average

ARMA Auto-Regressive Moving Average

BEM Blade Element Momentum

CBP Collective Blade Pitch

CBPC Collective Blade Pitch Control

CNN Convolutional Neural Network

DOF Degree of freedom

DAC Disturbance Accommodating Control

DMD Dynamic Mode Decomposition

EMD Ensemble Mode Decomposition

ESPRIT Estimation of Signal Parameters via Rota-
tional Invariance Techniques

ELM Extreme Learning Machine

FAST Fatigue Aerodynamics Structures and Tur-
bulence

FF Feedforward

FOWT Floating Offshore Wind Turbine

GSPI Gain-Scheduled Proportional-Integral

GP Gaussian Process

HAR Hammerstein Auto-Regressive

HAWC2 Horizontal Axis Wind Turbine Code-Second
generation

HAWT Horizontal Axis Wind Turbine

HMD Hybrid Mass Damper

IBP Individual Blade Pitch

IBPC Individual Blade Pitch Control

IPCC Intergovernmental Panel’s
recommendation on Climate Change

LSSVM Least Square Vector Support Machine

LCOE Levelized Cost of Energy

LIDAR Light detection and ranging

LPV Linear Parameter Varying

LQR Linear Quadratic Regulator

MLC Machine learning control

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

MBS Multi-Body System

MIMO Multi-Input Multi-Output

NREL National Renewable Energy Lab

PI Proportional-Integral

RNN Recurrent Neural Network

SISO Single-Input Single-Output

SINDy Sparse Identification of Nonlinear Dynam-
ics

SMC Sliding Mode Control

SC Structural Control

SVM Support Vector Machine

TRL Technology Readiness Level

TLP Tension leg platform

TMD Tune Mass Damper

TLD Tuned Liquid Damper

VAWT Vertical axis wind turbine

environmental hazards caused by land-based wind farms, such as visual
and noise impacts [7-9], and the lower-quality onshore wind may be
avoided by installing wind turbines in offshore regions.
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Offshore wind turbines face a significant challenge of high lev-
elized cost of electricity (LCOE). Unlike existing energy resources,
offshore wind technology is in the pre-commercial stage so that there
is still room to reduce the LCOE. It is known that the method to
lower the LCOE is to either reduce the total cost or improve the
energy production. Therefore, one can say that an optimal design with
an appropriate control approach is the solution to address all these
challenges. Technically, offshore wind turbines can be categorized as
bottom-fixed offshore wind turbines and floating offshore wind turbines
(FOWTs), based on the design of their substructures. Bottom-fixed wind
turbines are not suggested for wind turbines operating in the ocean,
because economic constraints hinder the development of a bottom-
fixed support structure for wind turbines operating beyond 60 m water
depth. Because the LCOE of a bottom-fixed offshore wind turbine
increases significantly as the water depth increases, the FOWT becomes
an optimal solution under the cost-benefit trade-off.

1.2. FOWT system dynamics

For the design of the FOWT system, it is believed that placing a wind
turbine on top of a floating platform is a feasible solution for operating
in the ocean. The major parts of an FOWT system are (1) a wind turbine
to harvest energy from the wind, (2) a floating platform support, and
(3) mooring lines to provide the wind turbine structure support in terms
of orientation and position, as well as platform support (Fig. 3). There
are two types of wind turbines that may be used to generate wind
energy: horizontal-axis wind turbines (HAWTs) and vertical-axis wind
turbines (VAWTSs) [12]. In this study, as the VAWT is not our focus,
we only consider the HAWT. Readers interested in VAWTs and FOWTs
with VAWT are referred to [13].

The performance of an FOWT system can be significantly compro-
mised by the motion of the floating platform caused by the environmen-
tal loads. This is not only caused by the extreme wave condition [14],
but also a combination of wind, wave and current [15]. An unstable
platform may decrease the nominal wind turbine area and affect energy
generation. Platform motion may also increase tower loads compared
to fixed-bottom wind turbines and negatively impact the structural
life of the system, which then requires extensive maintenance down
time [16]. Consequently, it increases the operational and maintenance
cost [17] and thus the overall LCOE compared against with other
offshore renewables [18].

To mitigate these environmental impact, control methods are quite
often used. During the past decade, numerous controllers have been
designed to address the shortcomings of floating platforms using a
range of controllers, such as proportional-integral (PI) [19-22], linear
quadratic regulator (LQR) [23-25], linear parameter varying (LPV)
[26], and model predictive control (MPC) [27-31]. They are bene-
fited from the experiences in the traditional offshore applications such
as ships [32], underwater vehicles [33], and standard offshore plat-
form [34] and bottom-fixed wind turbine control [35]. These control
algorithms utilize the blade pitch mechanism by actuating blades iden-
tically (collective blade pitch) or separately (individual blade pitch) to
provide the wind turbine with aerodynamic thrust to suppress platform
motion and maximize power generation and load mitigation. In com-
parison, mass-spring-damper-based FOWT control methods introduce
an extra degree of freedom and decouple the pitching mechanism
by providing the required thrust to reduce pitching phenomena [36].
Improved control mechanisms may elevate the performance of FOWTs,
leading to a reduction in the LCOE. However, the LCOE of FOWTs is
still higher than that of the bottom-fixed wind turbines.

The performance of advanced controllers can be improved by in-
corporating wind and wave forecasting techniques. Predicted wind
and wave information ahead of their encounter with the wind turbine
can provide preview-based advanced controllers with sufficient time
to respond to incoming disturbances and orient wind turbines for
optimal performance. The wind turbine industry has already benefited
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Fig. 1. Global cumulative installed (onshore and offshore) wind energy capacity.
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Fig. 2. New annual installation prediction until 2030.
Source: Data obtained from [11].

from wind forecasting for wind farm planning, operation, and grid
integration [37]. Numerous forecasting techniques for wind [38,39],
current [40] and wave [41,42] have been presented in the literature,
ranging from long-term (three days to one week or more) to short-
term (a few seconds to 30 min) prediction horizons [43-47]. However,
the controller response time for FOWTs is in the short-term predic-
tion horizon category [48,49]. Compared with traditional feedback
controllers, advanced controllers based on light detection and ranging
(LIDAR) information [27] incorporate the incident wind disturbance
before reaching the wind turbine, thus enhancing the performance.
An accurate short-term disturbance prediction incorporated in modern
control systems, such as feedforward control or MPC, can enhance
the performance in terms of platform stability and loading and deal
with the incident disturbance better than the counterpart feedback
controllers, resulting in further lowering of the LCOE.

1.3. Objective

It is clear that, as the design of an FOWT system is not a single
solution, the control approaches associated with the design become
even more complicated to define. However, one must select an appro-
priate control approach for a certain design. Therefore, we decided to
conduct a comprehensive review of the state-of-the-art in FOWT control
and highlight potential improvements to lower the LCOE with the use
of incident wind and wave forecasting, and we summarize the effort
in this paper. It is worth noting that because the number of FOWTs
in the operational stage is limited, we studied several methods in the
conceptual stage. That is why we refer to “feasible control methods” in
the title of this paper.

The remainder of this paper is organized as follows. Section 2
provides a brief overview of the FOWT system dynamics and the
overall framework of the control system. Then, a systematic review

of the control methods is presented in Section 3. Section 4 details
the wind and wave forecasting techniques for the control system. We
comprehensively discuss the advantages and disadvantages of different
control algorithms with respect to the platform design in Section 5.
Finally, the conclusion of this review and recommendations for possible
control methods for future FOWT designs are given in Section 6.

2. System description

Before discussing the details of the control methods and algorithm,
we review the system dynamics of the FOWT for those readers who are
not very familiar with it.

2.1. Overview of system dynamics

The concept of operating wind turbines using a floating platform
in the ocean is based on the existing employment of floating platforms
for oil and gas exploration in the ocean [50]. Several concepts have
been proposed to achieve platform stability for FOWTs such as barges,
tension leg platforms (TLPs), spar-buoys, and semi-submersibles [51],
as shown in Fig. 4. These concepts include buoyancy-stabilized plat-
forms, mooring line-stabilized platforms, and ballast-stabilized plat-
forms. Buoyancy-stabilized platforms use submerged body volume to
achieve stability, for example, barges and semi-submersible platforms.
The TLP is a typical example of a mooring line-stabilized platform. In
contrast, the spar-buoy is an example of a ballast-stabilized platform
that benefits from the heavy ballasting of the bottom of the platform to
stabilize the structure. A qualitative comparison between the associated
properties of existing floating platforms is presented in Table 1.

Floating platforms introduce additional loading (hydrodynamic
loading and mooring loading) owing to incident waves, as well as
aerodynamic loading on the wind turbine, regardless of the attachment
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Table 1

Properties of floating platforms.
Platform Stability Operational at the water depth (m) Motions Draft Fabrication Cost and Installation
Barge Hydrostatic 50 High Small Low/Easy
Spar-buoy Ballast 150 Low Large Average/Challenging
Tension leg Mooring 50 Average Small Average/Challenging
Semi-Submersible Hydrostatic 50 High Small Large/Easy

Wake
turbulence

Lightning

Yaw

Fig. 3. FOWT operating in the sea.

to the sea bottom with mooring lines. Wind energy generation based on
aerodynamic wind loads is reported in Appendix A. The incident-wave-
associated FOWT loading leads to an additional six degree-of-freedom
(DOF) motion compared to bottom-fixed wind turbines, as shown in
Fig. 3, and an FOWT is stabilized using a TLP base. The stability of the
floating platform is one of the dominant concerns of FOWT technology,
and it may directly impact the performance and safety of FOWTs,
leading to increased cost [52]. The performance and operation of the
wind turbine are coupled with the platform motion. Therefore, it is
essential to minimize the platform motion during FOWT operation.
Please note that we use the TLP type of FOWT as an example in Fig. 3 to
explain the working principle with minimum drawing effort; this does
not imply that we have a preference for it over the other designs, and
the same philosophy applies to the rest of the paper as well, such as
the figures in Appendix B.

The operational range of a wind turbine is divided into three
operating regions (ORs) based on the incoming wind speed, as shown
in Fig. 5. In region I, the wind speed is less than the cut-in wind speed
(Veuin)> and the wind turbine is in a parked condition. In region II,
the wind speed value is less than the rated value (Vg,eq). The control
objective focuses on the maximum energy extraction from the wind by
maintaining the blade pitch at an optimal angle. In region III, where the
wind speed value surpasses Vg,.q, the objective shifts toward regulat-
ing the generated power with pitch angle activity. When the wind speed
reaches the cut-off wind speed (Vo) mechanical brakes are applied
to ensure the safety of the wind turbine. In the case of FOWTs, the

number of control objectives becomes more complex with additional
platform motions. For an FOWT, the floating platform, regardless of
being tied to the seabed, may experience significant platform stability
issues due to incident waves and wind loads.

2.2. Framework of FOWT control systems

FOWTs are prone to platform motion owing to the floating base,
leading to performance deterioration. However, an effective control
system can deal with platform motion and achieve optimal wind energy
generation. Existing control mechanisms for bottom-fixed wind turbines
are rendered infeasible for FOWTs, owing to the additional platform
motion of the FOWT. However, bottom-fixed wind turbine controllers
can be modified to include the platform motion suppression objective.

The majority of FOWT controllers are based on feedback control
mechanisms. These feedback controllers mainly respond to the incident
wind and wave disturbance after the disturbance interacts with the
wind turbine system. Advanced preview-enabled controllers have been
presented in the literature. Preview-enabled controllers orient wind
turbines ahead of the incoming disturbance, thereby increasing the
performance. Such controllers can be used to minimize the effect of
incoming disturbances better than feedback controllers by using a
prediction mechanism for both the incoming wind and wave. The
benefit of the feedforward mechanism may be further extrapolated by
using incident wind and wave prediction to improve the controller
performance, as shown in Fig. 6.

3. FOWT control structure

The control system of a wind turbine is responsible for handling
the aerodynamic wind load and converting wind energy into electric
power. In general, there are multiple control levels to deal with wind
turbine operations. The primary-level supervisory control deals with
the startup and shutdown of the wind turbine. The wind turbine
starts generating power when the wind speed is greater than V ..,
and shutdown is triggered in the presence of excessive wind beyond
Veutoffs @S it may harm the wind turbine structure. The second-level
operational control is dedicated to achieving control objectives based
on the wind turbine operating region, as shown in Fig. 5. The third-
level control is concerned with yaw and pitch actuation systems and
related electronic units. The scope of this study was limited to the
second-level operational control of a wind turbine. In this section, the
control objectives and methodologies used to achieve these objectives
for FOWTs are discussed in detail.

3.1. Control objectives

The control objectives of a wind turbine vary based on the operating
regions, namely, maximum power generation operating in region II and
power regulation in III, as shown in Fig. 5. There are generally two
control loops to achieve these control objectives, as shown in Fig. 7.
In region II, the torque control loop of the wind turbine is used to
maximize the generated power by operating near the optimal C, by
using a fixed blade pitch angle to an optimal value, based on Eq. (1). In
region III, the objective shifts toward regulating the generated power at
the rated value. The blade pitch control loop regulates the aerodynamic
loads and power generated by manipulating the blade pitch. There are
two standard pitching strategies for the region III pitch control loop:
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Fig. 4. FOWT platforms (semi-submersible platform, barge, tension-leg, and spar-buoy).
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Fig. 5. Operating regions of a wind turbine.

pitch-to-stall and pitch-to-feather [53]. The generator torque control
includes two ways to regulate power while operating in region III:
constant torque and constant power, based on the relationship in (2).
In the constant-torque mechanism, the generator torque is fixed to the
rated torque, and the generator speed is regulated using the blade pitch
angle. In constant-power control, the generator torque and blade pitch
angle are simultaneously manipulated. The constant-torque methodol-
ogy is simpler in terms of reduced loads on wind turbines; however, the
power quality is affected. By contrast, the constant-power methodology
improves the power quality but increases the controller complexity and
wind turbine loads [23].

However, the major problem associated with FOWT occurs because
of platform motion during operation in region III. The wind turbine
structure undergoes undesired pitching phenomena, often called nega-
tive damping [54]. The frequency of the platform is coupled with the
blade pitch mechanism while operating in region III, causing a surge
in the pitching motion of the platform, leading to problems such as
poor power quality and increased loads. Therefore, an adequate control
mechanism is required to achieve the standard wind turbine control
objectives and deal with the platform pitching phenomena associated
with the FOWT floating platform.

5
npR Cp,max ) 2
Tgen = ngen = ngen 1
[
P
Tgen — rated (2)
Ngen@Pgen
where

Incident wind
and wave
| disturbance
Prediction
mechanism
(Section 4)
¢ Loads
v
Controller Parameter runing | System -
4 (Section 3) dynamics >

Fig. 6. FOWT control framework.

* T,., = Generator torque

p = Air density

R = Rotor radius
N = Gear box ratio
Cpmax = Maximum power coefficient

4, = Tip speed ratio related to C,

,max

* @,,, = Generator rotational speed

* Ngen = Generator efficiency

P,,.q = Rated generated power

Several system models have been proposed in the literature, to
develop control schemes for FOWT and preview the outcome without
running the actual wind turbines. Appendix B provides the details
of these simulation codes for the readers interested in FOWT system
models.

3.2. Control methodologies

Control methodologies for FOWTs designed to deal with undesired
platform-associated motions can be divided into two categories: (1)
blade pitch-based FOWT control methods and (2) mass—-spring—damper-
based FOWT control methods. In the former, existing control variables
such as blade pitch angle, generator torque, and yaw angle of a wind
turbine are used to achieve region-based control objectives and plat-
form motion suppression. Yaw control is beyond the scope of this
study, as the wind is assumed to be unidirectional for the control
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methodologies under consideration. In the latter category, additional
DOFs are introduced into the system to deal with the platform stability
and associated problems of FOWTs.

This section provides a discussion on the range of blade-pitch and
mass-spring—-damper-based control methods reported in the literature.

3.2.1. Blade-pitch based FOWT control methods

The majority of FOWT control methodologies use a blade pitch
actuator to achieve wind turbine platform stability. These methodolo-
gies can be further divided into two subcategories: conventional and
advanced FOWT control methods.

3.2.1.1. Conventional FOWT control methods. Conventional FOWT con-
trollers are simple and easily designed control mechanisms based on the
single-input single-output (SISO) principle. Independent control loops
are applied in parallel to achieve multiple control objectives, as shown
in Fig. 7.

The platform pitching motion of the FOWT was minimized by
keeping the frequency of the blade pitch mechanism lower than the
resonance frequency of the platform by Larsen et al. [19]. For region
11, a variable-speed control loop was used to maximize the generated
power. A region of constant speed was introduced between regions 2
and 3, followed by a constant-torque loop in region III. The pitching ac-
tion was determined by a gain-scheduled proportional-integral (GSPI)
controller for region III. Improved platform pitching was achieved using
a less aggressive control methodology at the cost of reduced power
quality and poor rotor speed regulation.

Another GSPI controller-based solution for the negative platform
damping problem of the barge-based FOWT was provided by Jonkman
[20]. Two independent SISO controls were designed: a generator-torque
controller to generate maximum power in region II and maintain the
power captured at the rated value in region III. A GSPI controller was
used to adjust the rotor speed as a function of blade pitch activity
based on the collective blade pitch (CBP). Jonkman et al. [20] designed
additional control loops upon facing complications regarding platform
oscillations and power fluctuations during the early design synthesis.
Tower-top feedback control, active pitch-to-stall control, and a con-
troller based on detuned gains were the additional loops included in
the original design mechanism. These additional loops were proposed
to minimize the Fore-aft motion of the tower, instability of the platform
yaw, and excessive barge motions. The tower-top feedback control
failed to improve the pitching motion of the platform. Furthermore, ac-
tive pitch-to-stall control was found to be suitable for power regulation
for the barge platform, at the expense of increased platform pitching
motion. However, detuned gains proved to be the most suitable con-
troller, as it reduced the blade activity and addressed the platform
pitching issue. This configuration is used for testing newly designed
controllers and is considered as the baseline FOWT control [55].

The baseline controller designed by Jonkman et al. [20] was ana-
lyzed for different platforms by Matha et al. [56]. The TLP, barge, and
spar-buoy floating concepts were compared in terms of fatigue loads
and platform stability. Matha et al. [56] modified the baseline con-
troller for a spar-buoy platform. Constant-torque control was designed
to improve the platform pitching motion while operating in region
III, in contrast to the constant-power controller originally designed
by Jonkman et al. [20]. Meanwhile, the controller’s bandwidth was
kept low to avoid coupling with the frequency of the platform. It
was noticed that the barge platform is cost-effective, but its inability
to withstand incident loads may cause stability issues. The spar-buoy
platform showed resistance toward tower loading compared to the
barge platform. However, the deployment of the spar-buoy platform is
costly because of its intricate design and assembly. In comparison, TLP
was found to have better performance among the compared concepts.
However, it was found that the anchoring system of the TLP may
increase the cost.

Platform instability was addressed by using the pitching velocity
as an input to regulate the generator rated speed in region III [21].
The generator speed was used to provide counter thrust to suppress
the platform pitch motion and achieve platform stability. This unique
control methodology reduced the negative damping and blade pitch
activity at the cost of acceptable rotor speed fluctuations and power
variations.

A control strategy based on the estimation of wind speed to sup-
press the negative damping of the Hywind concept platform [54] was
proposed by Skaare et al. [22]. This control mechanism improved tower
loading and nacelle oscillations. Simultaneously, poor rotor speed reg-
ulation and reduced power generation were observed compared to the
conventional blade pitch mechanism. Moreover, because the strategy
was based on the estimated form of wind in region III, the effectiveness
of this control scheme was mainly governed by the wind estimation
quality.

SISO-based conventional controllers borrowed from bottom-fixed
wind turbine systems are a reasonable starting point for FOWT con-
trol. However, as suggested by Jonkman [20], multiple-input multiple-
output (MIMO) state-space control methods for FOWT may improve
the performance further with a superior approach to deal with the
cross-coupling of control loops and disturbances.

3.2.1.2. Advanced control methods. Conventional FOWT controllers can
easily realize SISO controllers; however, they may not be a suitable
option for highly coupled multi-objective systems such as FOWTs. The
design process of SISO controllers requires a thorough understanding
of the system and careful tuning of the control loops. Otherwise, mul-
tiple control loops may couple with each other and affect the overall
system performance. As suggested by Jonkman et al. [20], advanced
controllers based on MIMO may further improve the performance of
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FOWTs, owing to their inherent ability to deal with short SISO control.
MIMO control schemes such as LQR, LPV, and MPC, used for FOWTs
reported in the literature are discussed in the following.

Most of the advanced controllers designed for FOWTs are based on
state-space control, where the design involves linearizing the nonlinear
system model at an operating point x,, such that state x transforms into
the deviation 4x around x,,. Later, the linear control theory was applied
to design a controller to achieve the given objectives. The state-space
equations are as follows:

Ax = AAx + BAu + B, Auy,

3
Ay = CAx + DAu+ D, Auy 3

where

* X =X,,+4X

+ y= Measurement matrix

* Au= Actuator matrix

Auy= Disturbance matrix

A = State matrix

B = Actuator gain matrix

B,= Disturbance gain matrix
C= Output matrix

D= Feed-through inputs

D,= Feed-through disturbance

Several advanced controllers have been designed to deal with plat-
form motions using the MIMO (LQR) methodology on barge, TLP,
and spar-buoy platform-based FOWTs operating in region III [23—
25]. The LQR collective blade pitch controller (LQR-CBPC) and indi-
vidual blade pitch controller (LQR-IBPC) were designed for a barge
platform [23]. The LQR-IBPC and wind disturbance-based disturbance-
accommodating control (LQR-IBPC-DAC) were designed for FOWTs on
a barge and TLP [25]. The controllers designed for the barge and
TLP were later used to investigate the performance of a spar-buoy
platform [24].

In region III, the LQR-CBPC scheme for FOWT showed improve-
ments in speed regulation, mainly because of the use of constant-power
control instead of constant-torque control and platform pitch motion
reduction. However, using the CBP mechanism led to increased tower
loads due to overlapping blade pitch commands issued for rotor speed
control and platform pitch minimization [24]. To circumvent this issue,
LQR-IBPC was used, as in the IBPC mechanism, asymmetric rotor
loads are created by pitching blades separately, in contrast to the CBP
mechanism, and the overlapping blade pitch commands for rotor speed
regulation and platform motion suppression are resolved. The LQR-
IBPC mechanism improved the tower loading for the barge platform.
In comparison, the performance of LQR-IBPC was found to be limited
because of the relatively lower platform frequency of the spar-buoy
platform. However, LQR-IBPC has the advantage of improved rotor
and power regulation based on increased blade pitch actuation for the
spar-buoy platform.

The LQR controller based on IBPC achieved improvements when
applied to the barge platform compared to the LQR-CBPC control [23].
LQR-IBPC-DAC was not determined to be unsuitable for barge plat-
forms, because the barge platform is mainly influenced by waves,
whereas the LQR-IBPC-DAC is used to address wind disturbances. [25].
LQR-IBPC was shown to improve the rotor speed and power regulation
for barges and TLPs, but in terms of dealing with platform pitching,
this scheme was not as effective for spar-buoys because of the low
natural frequency of the platform. Furthermore, improvements related
to power and speed regulation were achieved using the LQR-IBPC-DAC
for the TLP.

A collective blade-pitched H-infinity control (H-Infinity-CBP) based
on a simplified semi-submersible FOWT nonlinear model [57] was used
to deal with the platform motion and associated power regulation and
load mitigation by Sanchez et al. [58]. H-Infinity-CBP is designed based
on a linearizing nonlinear model operating in region III. Rotor speed
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regulation of up to 40% was achieved, including relatively smaller
improvements in platform pitch motion reduction and load mitigation.

A study was conducted on the input—output relation of a 10 MW
FOWT to determine the frequencies with a substantial impact on the
output with the least control variable impact by Lemmer et al. [59]. The
wave information was added to construct a realistic environment and to
represent the coupled frequencies using the parametric wave excitation
model [60]. Wind and wave disturbances with a significant impact on
the output due to the minimum control actuation were chosen. This
information was used to design an LQR controller based on the input
blade pitch angle and generator torque, and it was compared with a
conventional PI controller. The designed controller was observed to
have improvements in system response reduction and damping various
resonances. However, the control mechanism could not completely
overcome the effect of the incoming wave disturbance.

Gain-scheduled (GS) output feedback H-infinity control based on
the collective blade-pitch approach for FOWTs operating in region III
was designed by Bakka et al. [61]. A simplified model is generated
based on significant FAST [55] model dynamics for control synthesis,
namely, the rotor generator and tower. Linear models were generated at
multiple operating points based on output feedback H-infinity control,
and a scheduling mechanism was developed. Substantial improvements
were found in terms of tower loading and rotor speed regulation.

Input/output feedback linearization (IOFL) and sliding mode con-
trol (SMC) methods were used to analyze the effects of incident dis-
turbance on platform motions and regulate the generator speed and
of FOWTs operating in region III [62]. A simplified model based on
the DOFs of the blade pitch, generator speed, and platform pitch was
obtained. Later, a simplified nonlinear model based on a series of
linearized simplified models was designed. The switching mechanism
between these linear models was obtained based on the LPV model
as a blade pitch angle function. Compared with the baseline model,
SMC showed improvements in generator speed regulation, while the
platform pitch motions were similar to those of the baseline wind
turbine. The reason for speed regulation was that the wind speed was
considered for the control design. However, platform motions were
observed without revising the control design. In contrast to SMC, IOFL
control causes increased platform pitching motion in comparison to the
baseline controller [20]. Another important finding was that the perfor-
mance of the developed controller was degraded when implemented in
complex models.

LPV and LQR were developed by using a GS blade pitch controller
for a barge platform-based FOWT [26]. The objective was to regulate
the generated power and minimize the structural loading while operat-
ing in region III. The LPV was further modified with state feedback and
output feedback control mechanisms and compared with the baseline
wind turbine [20]. It was found that the GS-LPV and GS-LQR controllers
performed better in terms of power regulation and platform pitch mini-
mization. In contrast, the LPV-GS controller with state feedback showed
superior improvements in platform pitch motion damping compared to
the other controllers.

A collective blade pitch switching LPV (CBP-SLPV) was proposed
based on a semi-submersible FOWT to deal with the platform motions
and associated power regulation over the entire region III [63]. The
SLPV was developed based on a simplified nonlinear model [57] by
linearizing over a range of operating points in region III. Satisfactory
generator speed and power regulation were achieved in comparison to
the baseline controller [20].

MPC is an advanced control method that predicts future action
based on the available information of the internal system model, ful-
filling a set of constraints. Numerous examples are available in the lit-
erature regarding the use of MPCs for fixed-bottom wind turbines. [64—
67]. Schlipf et al. [27] designed a CBP-based nonlinear MPC (NMPC-
CBP) for FOWTs operating in region III based on the simplified Sandner
model [68]. Incident wind and wave previews were used for the con-
troller design based on the blade pitch and generated torque. The con-
trol objective was to keep the generated power and rotor speed steady
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based on an ideal estimation of the wind and wave previews [64]. The
designed controller was later compared with the baseline FOWT [20]
placed on a spar-buoy platform under intense wave and wind pro-
files. The controller showed satisfactory results regarding the generated
power and speed regulation error, including the blade load reduction;
however, the NMPC controller requires higher computational resources.

Following the CBP-based nonlinear MPC-CBP design for FOWTs
in [27], Raach et al. [28] developed an extended version of NMPC
based on the IBP mechanism (NMPC-IBP). NMPC-IBP includes rotor
and blade load reductions alongside the existing benefits of the original
NMPC-CBP, platform pitch reduction and rotor speed regulation. After
the controller design, it was successfully implemented on the baseline
wind turbine exposed to turbulent loads. Rotor fatigue loads were
reduced significantly by using the extended NMPC based on the IBP
mechanism.

An optimal linear MPC was implemented on a 10 MW FOWT by
Lemmer et al. [29]. A tunable controller was designed to provide early-
stage design assistance during FOWT fabrication. The linear MPC based
on the MIMO system was designed to operate in region III to regulate
the power to a constant value and minimize the structural loads. In
comparison, maximum power generation was the primary objective
for region II. The linear MPC showed superior improvement to a PI
controller for rotor speed and generator power regulation. Moreover,
tower-top movement and negative platform pitch were minimized.

A reduction in the LCOE of an FOWT may be achieved through en-
hanced structural performance against incident loads. For this purpose,
we discuss several feedback controllers. One major drawback is that
these control mechanisms are designed to respond to incidents after
their interactions with the system structure. The wind turbine structure
of an FOWT experiences the incoming wind, and the wave and feedback
control system is activated after the interaction of incoming wind and
waves with the system. Such interactions may degrade structural life
over a period of time. Thus, conventional controllers may not achieve
extended structural life and would subsequently increase the LCOE.

To circumvent the shortcomings of feedback controllers, researchers
may use feedforward control loops to deal with incident disturbances
before contacting the wind turbine. LIDAR has been used to measure
incoming wind disturbance. Numerous attempts have been made to
use LIDAR for bottom-fixed wind turbines [69-71]. LIDAR is based on
Doppler’s principle, where a laser beam is spread out and received upon
reflection [72]. The wavelengths of the transmitted and received beams
are used to estimate the incoming wind speed. Two types of LIDARs are
available based on wind speed calculation methods, that is, continuous
and pulsed waves. Continuous-wave LIDAR uses a laser beam focused at
the focal point, whereas pulsed-wave LIDAR calculates the wind speed
at multiple distances [69].

Unlike bottom-fixed wind turbines, preview-based LIDAR-assisted
control for FOWT is still under development. An extended version
of feedforward CBPC, initially used for bottom-fixed wind turbines
in [73], was designed for FOWTs using H-infinity control synthesis
by Navalkar et al. [30]. Based on the combination with feedforward
feedback, the newly formulated CBPC was found to be useful for mini-
mizing the loads and generator speed oscillations. Schlipf et al. [31]
designed a CBP-feedforward controller (FF-CB) for FOWTs based on
LIDAR data. The feedforward control was designed using a simplified
nonlinear model for ideal wind preview and used along with the
conventional feedback controller designed by Jonkman et al. [55].
Later, the design procedure was followed by using nacelle-based LIDAR
information instead of an ideal preview wind. With the addition of wind
uncertainty, a realistic feedforward controller proved useful compared
with the standalone baseline controller to minimize rotor speed and
power fluctuation and reduce blade, rotor shaft, and tower loads.
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3.2.2. Mass—spring-damper based FOWT control methods

An alternative approach was reported in the literature to minimize
structural loads and external influences by introducing additional ac-
tuators based on a mass-spring—damper, known as structural control
(SC). In this methodology, additional DOFs are introduced to influence
the structural behavior of the system. This methodology has been
widely used to minimize the oscillations and vibrations of mechanical
structures and systems efficiently [74-77]. For FOWTs, the aim of
using the SC is to dampen platform oscillations and tower loading. The
critical advantage of the SC for FOWTs was observed while operating
in region III. The blade pitch mechanism is not required to regulate
platform stability, a significant issue observed in region III, and SC
addresses the platform’s pitching phenomenon. The SC is based on
passive, semi-active, and active control approaches [78]. Passive struc-
tural control systems use a set of constant parameters to dampen the
oscillations. Semi-active controllers are mainly tunable over a period of
time. Contrary to the passive control approach, active structural control
differs based on generating restoring forces with dedicated actuators to
address the structural loading and oscillation.

Passive and active structural control schemes based on two indepen-
dent tuned mass dampers (TMDs) to deal with the loading and damping
of platform oscillations were designed by Lackner et al. [36]. These
TMDs were placed in the nacelle of a floating barge operating in regions
II and III. Lackner et al. [36] modified the baseline wind turbine [20]
by integrating TMD systems and incorporating passive, semi-active, and
active structural control synthesis. Based on the input-output data, a
high-order design model was created using system identification. Con-
trol synthesis was achieved based on the loop-shaping mechanism. It
was observed that both techniques reduced wind turbine loading when
compared with the baseline wind turbine. However, the complexity and
overall cost increased owing to the addition of TMDs. Moreover, active
structural control outperformed in reducing the tower’s fore-aft fatigue
load at the expense of energy consumption, which may be obtained
from the high wind while operating in region III. However, in region
11, active structural control proved costly, and for this purpose, a hybrid
mass damper (HMD) was incorporated to act as a passive TMD while
operating in region II.

Nacelle-based TMD systems used by Lackner et al. [36] were re-
designed by Namik et al. [79] to examine the impact of actuator
dynamics on TMDs. Load reduction and power consumption were
also investigated for passive and active control strategies on a barge
platform-based FOWT. Although the newly designed controllers fol-
lowed the simulation trends as reported by Lackner et al. [36] con-
cerning load reduction, the redesigned TMD system achieved platform
pitch minimization by consuming less power on average.

Simplified models of the mono-pile, barge, Hywind spar-buoy, and
TLP were used to design an optimal passive TMD based on the ge-
netic algorithm proposed by Stewart et al. [80]. This TMD was found
to reduce the side-to-side tower fatigue load, which is one of the
main components of the fatigue loads of FOWTs, better for barge and
mono-pile than the TLP and spar-buoy platforms.

A semi-active TMD placed in the nacelle of a wind turbine was
used to minimize the incident loads for two platforms: bottom-fixed
and TLP, while operating in regions II and III [81]. The designed semi-
active TMD has a low-power energy source, and it swiftly switches
between the active and passive modes. This mechanism minimizes the
side-to-side tower loading of the monopile and slackline incidents for
the TLP. A platform-based TMD for barge platform FOWT was used
to minimize the platform motions and tower loading while operating
in regions II and III [82]. A simple static output-feedback mechanism
was proposed to generate stroke using generalized H-infinity control.
An input-output linear model was obtained using system identification.
Improved results were obtained in terms of fatigue load and generator
power error reduction, whereas upon comparison, the generalized H-
infinity control achieves superior performance to H-infinity structural



K.A. Shah et al.

control. Similarly, a multilayered tuned liquid damper (TLD) was de-
veloped in [83] for a spar-buoy floating platform, and it was found to
be useful for minimizing platform motions.

The performance of the conventional passive TMD system was
improved by introducing an inerter in the system [84]. The proposed
TMD system was placed in the nacelle of the FOWT attached to a barge.
The improvement was evaluated under the influence of real incident
disturbances, waves and wind. This novel extension of the TMD was
found to be helpful in reducing tower loading. In a relatively similar
approach, a sewing thread artificial muscle (STAM) based on thermal
actuation attached to the mooring lines of the TLP was proposed
to minimize platform pitching and tower loading for regions II and
III [85]. The active mooring method showed improved results for the
tower loading and pitching motions.

4. Wind and wave forecast algorithms for FOWT control

Incident disturbance forecasting is an essential feature of advanced
control algorithms, such as MPC and feedforward control. Unlike feed-
back control, where the controller responds to the disturbance after the
system interacts with it, feedforward controllers react to the preview
of the incoming disturbance ahead of its contact with the system. This
approach improves the performance because the incident disturbance
preview provides the controller with sufficient time to respond to the
incoming disturbance and adjust parameters to achieve control objec-
tives. Preview-enabled control also enhances the system’s structural life
as it responds to the incident disturbances ahead of its contact with the
system structure.

FOWTs are exposed to incident wind and wave disturbances that
propagate in the ocean. Many controllers are designed to stabilize the
platform and achieve control objectives by minimizing the effects of
wind and wave disturbances. However, the performance and structural
life of FOWTs still lags behind those of fixed bottom offshore wind
turbines, as most of these control systems are based on feedback
control. The incident wind and wave prediction may effectively im-
prove the performance, loading, and structural life of FOWTs with the
help of advanced control algorithms such as MPC or feedforward con-
trol, as demonstrated by LIDAR-based incident wind preview-enabled
feedforward controllers [31].

Several forecast techniques for wind and waves have been reported
in the literature, which can be used for preview-based advanced con-
trollers. However, there are issues concerning the prediction horizon
length, and the forecast quality should be considered when using these
prediction mechanisms. In this section, wind and wave forecasting
algorithms are discussed.

4.1. Wind forecasting

The wind turbine industry extensively employs wind forecasting to
examine a region’s seasonal power production, grid integration, and
wind farm design [86]. Based on its application, the length of the
prediction horizon of wind forecasting ranges from a few hours to
months and is categorized as short-, medium-, and long-term. However,
the prediction horizon length for individual wind turbine control sys-
tems based on preview information is only a few seconds. Advanced
controllers such as feedforward control require a preview time of a few
seconds [48]. Similarly, MPC uses a 5-10 s horizon to compute the
input values for the system response [49]. Therefore, the scope of this
review is limited to wind forecasting for wind turbine control, referred
to herein as ultrashort wind forecasting. An overview of the models and
devices used for ultrashort wind forecasts is provided as follows.

Statistical time-series models used for wind forecasts are based on
historical site data. Based on historical wind data, these models tend to
learn the underlying patterns in the available data and calculate future
values ahead of time. Widely used conventional statistical models
for wind forecasting include the autoregressive model (AR) [43,87],
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autoregressive moving average model (ARMA) [44], autoregressive
integral moving average (ARIMA) [45], fractional-ARIMA [46], and
Hammerstein autoregressive (HAR) [47]. Statistical methods rely heav-
ily on historical wind data, and thus may provide faulty wind forecasts
in the absence of sufficient historical site data.

Machine learning (ML) techniques rely on historical data and con-
sider the atmospheric variables that affect wind speed, such as humid-
ity, elevation, and atmospheric pressure, for wind forecasting. There-
fore, ML methods deal with the nonlinearity of wind better than statisti-
cal methods. ML nonlinear prediction methods include artificial neural
networks (ANNs) [88,89], recurrent neural networks (RNNs) [90],
support vector machine (SVM) [91,92], least-squares support vector
machine (LSSVM) [93,94], Gaussian process (GP) [95], Bayesian net-
works [96], and extreme learning machine (ELM) [97]. Overfitting and
minimum local existence are major drawbacks of ANNs [98]. ELM has
been proven to have better performance than conventional ANNs and is
used for both speed estimation and power forecasting [97,99,100]. Hy-
brid models, combinations of existing model techniques, have also been
reported in the literature for improved performance. For example, a lin-
ear ARIMA and a nonlinear ANN were used in combination to improve
wind forecasting [101]. Similarly, a combination of ELM and ARIMA
was shown to have enhanced performance for wind forecasting [102].

LIDAR is used in the wind turbine industry for several applications,
such as wind power estimation and site analysis [103]. It is also used
to provide the preview of incident wind for an ultrashort scale horizon
upstream of the wind turbine. The wind speed is calculated based on
laser light emitted from the LIDAR and reflected by incoming wind
particles. Preview-based measurement of the incoming wind speed
for FOWT control is discussed in Section 3. LIDAR-based forecasting
techniques have been reported to outperform forecasting techniques
such as ARIMA and persistent methods [104,105]. However, the higher
cost and weather-dependent performance are challenges that require
further research.

4.2. Wave forecasting

Incident waves account for a significant part of the FOWT loads
when minimizing platform motions. Therefore, they are an essential
feature to be considered alongside the incident wind in preview-based
FOWT control. Feedforward controllers based on wind and wave pre-
views may improve the FOWT loading and platform stability compared
to feedback controllers by providing the system with sufficient time to
deal with the incoming disturbances. Many wave forecast methods have
been reported in the literature, such as physics-based models, statistical
models, and ML models. A discussion of these models is provided in the
following.

Physics-based models are numerically designed models that solve
the complexity of waves based on the physics behind wave mechan-
ics. Physics-based wave forecast models include WAVEWATCH III
(WW3) [106], European Center for Medium-range Weather Forecasts
(ECMWF) [107], and Simulating Waves Nearshore (SWAN) [108].
These models are generally used for long-term prediction horizons
over extensive areas. In contrast to physics-based theory-driven models,
data-driven statistical and ML provide accurate predictions based on
historical site data. These time-series algorithms extrapolate past values
to provide future wave predictions. Statistical wave prediction models
for wave prediction reported in the literature include AR, ARMA,
and ARIMA [109-111]. Compared to statistical models, ML prediction
models provide improved nonlinear trend identification in time series
wave data. ANN, RNN, CNN, and ANFIS-based prediction models [112-
116] are examples of ML models used for wave prediction in the
literature. A comparison of time series-based models and a physics-
based model (ECMWF) at multiple sites highlights the weaknesses and
strengths of these models [117]. The physics-based model performs
better for longer prediction horizons, whereas the time-series models
are better for a shorter prediction horizons. Combinations of physics-
based and data-driven statistical models have also been reported in the
literature [118,119].
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Table 2
Conventional FOWT control methods based on blade-pitch mechanism.
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Method Model Platform Description Economic viability OR
CBP-GSPI [19] HAWC2/SIMO- Spar-buoy Region-dependent control based on simple Improved tower stability. however, degraded 2,3
RIFLEX (Hywind) switching process, pitching controller of power quality and poor rotor speed regulation.
frequency lower than the platform pitching
frequency is employed for region III.
CBP-GSPI [20,56] FAST Barge, TLP, Feedback loop based on Tower-top movement, Only detuned gains control improves the 2,3
Spar - buoy pitch-to-stall regulation and detuned gains. negative damping issue. Further use of MIMO
control is suggested including IBPC.
Simple Platform FAST Barge Platform pitch velocity based generator speed Reduced negative damping and blade pitch 3
Pitch Control [21] control in region III. Also used IBPC. activity at the cost of the rotor speed
fluctuations and power variation. IBPC showed
inadequate load reduction.
Control based on HAWC2/SIMO- Spar-buoy Estimator based control mechanism. Tower Loading, nacelle oscillation and rotor 3
estimated wind RIFLEX (Hywind) loads are found reduced. However, poor rotor

speed [22]

speed regulation and reduced power generated
are observed.

4.3. Consideration of wind and wave prediction

Wind and wave preview-enabled advanced controllers can be a
great solution for lowering the cost of energy. Look-ahead incident
disturbance information is crucial, as LIDAR-assisted wind preview-
enabled controllers are useful for FOWTs [31]. Ultrashort incident wind
and wave forecast methods have the potential to improve the perfor-
mance of advanced controllers [120]. However, associated issues need
to be addressed before their application in FOWT control algorithms.

» Statistical and ML models generally perform better for a shorter
horizon, as these models are solely based on historical data. ML
models such as ANN and RNN perform better than statistical
models, because they have the ability to map nonlinear trends in
a given dataset [37]. However, because these prediction methods
are based on the historical data, specific problems are apparent,
such as a lack of sufficient site data, poor anomaly detection, and
scalability.

Physics-based weather models such as [106-108] are often suit-
able for predicting longer horizons. A combination of physics-
based models with short-term ML forecast models can be a viable
avenue for wind turbine control. The shortcomings of ML tech-
niques can be mitigated using extensive data generated through
physics-based models.

LIDAR-assisted wind prediction is a superior alternative, as the
prediction range is up to 30 km [72]. However, because the
working principle depends on the line of sight, performance can
be affected by poor weather conditions.

5. Discussion

FOWT technology is still in the precommercial phase, in contrast
to bottom-fixed offshore wind turbines. The primary concern of FOWT
development is the associated cost of energy production and the poten-
tial to achieve a cost-effective advantage compared to the bottom-fixed
systems, which is deteriorated by the floating base of FOWTs. However,
an efficient control mechanism may deal with the shortcomings of
the platform, making it economically feasible. These control methods
aim to lower the LCOE while operating the regions below and above
the rated wind speed, making it economically feasible. Several control
schemes have recently been developed for this purpose.

5.1. Comparison between blade-pitch and mass—spring-damper based FOWT
control methods

FOWT can be controlled based on either existing actuators, known
as blade-pitch controller methods, reported in Section 3.2.1 or by in-
cluding additional actuators, mass—spring—damper-based FOWT control
methods Section 3.2.2. We compare these control methodologies in
detail.

10

When considering blade-pitch controller methods, conventional
SISO feedback controllers are a natural choice for FOWTs by ma-
nipulating the aerodynamic wind load using the blade pitch angle
and generator torque. Their simple design and easy realization make
them suitable options for bottom-fixed wind turbines. However, the
natural frequency of the floating platform is lower than that of the
bottom-fixed wind turbine foundation, which causes negative platform
damping in region III [19]. Therefore, controllers designed for bottom-
fixed wind turbines may increase negative platform damping when
used for FOWTs. Several SISO control strategies have been reported
in the literature to address this issue; refer to Table 2 for details.
For example, negative platform damping is addressed by reducing the
control bandwidth; however, power and speed variations have been
observed [19]. Skaare et al. [22] developed a wind speed estimator-
based blade pitch control method to deal with the floating motion of
the platform. Improvements in platform motion damping were achieved
at the cost of the rotor speed and power output deviation. Jonkman
et al. [20] utilized a GS SISO controller with detuned gains to deal with
negative platform damping on a barge platform. However, the achieved
performance is likely to be increased using MIMO controllers, as
suggested by Jonkman et al. [20]. The coupling between the unmodeled
DOF and SISO control loops of the FOWT causes inadequate platform
motion minimization, as well as power and rotor speed regulation.

Blade-pitch-based advanced control methods can deal with cross-
coupling between the unmodeled system dynamics and control loops
better than SISO controllers. These controllers are based on linearized
system models and exhibit superior performance compared with the
baseline SISO controller. The conflicting blade-pitch commands for the
platform and rotor regulation are dealt with by the IBPC by creating
an asymmetric rotor load. However, the platform properties may affect
the performance of these advanced controllers. For example, the barge
platform is prone to increased loads owing to the inherent platform
motion that induces incident waves. In the case of a TLP, the platform
is less affected by the incident waves. Thus, the performance of control
methods differs [25].

Most of the blade pitch advanced control methods for FOWTs are
designed around a single operating point. The control method may
perform well around the operating point; however, moving away from
the operating point may lead to performance degradation. To overcome
this obstacle, a GS controller based on a series of linearized models at
a range of operating points improves power regulation and platform
motions. LPV controllers offer another switching mechanism to incor-
porate multiple linear models for a range of operations and deal with
the limitations of linearized MIMO models that are only valid around
linearization points.

Advanced controllers, such as MPC controllers, improve perfor-
mance while dealing with uncertainties and unmodeled system dynam-
ics. Based on preview wind and wave measurements, MPC corrects the
control trajectory based on the plant model at every step. It also allows
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Table 3
Advanced FOWT control methods based on blade-pitch mechanism.
Control methods Model Platform Description Economic viability OR
LQR-CBP [23] FAST Barge CBP based Rotor thrust is used to regulate Poor power and rotor regulation compared 3
platform pitch and rotor speed. with baseline controller. Improved tower
loading, platform motions.
LQR-IBPC [23-25] FAST Barge, TLP, Asymmetric rotor aerodynamic load is used to Tower loads are decreased for the barge, 3
Spar-Buoy regulate the platform pitch and rotor speed. however poor rotor and power regulation. TLP,
compared to the Barge and spar-buoy, exhibits
less platform movement when IBPC. Due to the
lower natural platform frequency, IBPC on
Spar-buoy is not useful regardless of the
improved rotor regulation.
LQR-IBPC-DAC FAST Barge, TLP, DAC is used as an extension of IBPC with an DAC has no further improvement on the barge 3
[24,25] Spar-Buoy additional wind disturbance rejection. compared to the IBPC applied on a barge.
Whereas, when it is utilized on TLP, power and
speed regulation are improved with a reduction
in side-to-side loads. DAC used on spar-buoy
improves rotor speed but increases the blade
pitch activity and loads.
H-Infinity-CBP [58] Hommer model Semi- Linearized MIMO control method Improved rotor speed regulation and load 3
submersible reduction compared to baseline wind turbine.
MIMO (LQR) [59] DTU-10MW Spar-Buoy Effects of the control inputs are analyzed based Damped various resonances, but observed not 3
Triple Spar on how they affects the output for a floating being able to suppress the wave excitation
wind turbine in an open loop scenario and an entirely.
LQR based on observations is synthesized.
GS-Output feedback ~ FAST Barge Generator speed is regulated at the rated value Improvements in platform stability and reduced 3
H-infinity [61] using a gain scheduled controller to keep drive fatigue loads, LPV based GS controller is
train and tower oscillations low. suggested for further improvements.
SMC and IOFL [62]  FAST Barge Methods based on LPV control are SMC is found to have achieved generator speed 3
implemented; to regulate generator speed, and  regulation better than IOFL for simplified wind
to analyze the effects of incident disturbance turbine models and performance degraded
on platform motions. when complex wind turbine models are
utilized.
LPV and LQR based FAST Barge GS-LPV and GS-LQR based on output feedback  Improved power regulation and platform pitch 3
GS [26] and state feedback are employed. minimization is achieved.
SLPV [63] Hommer model Semi- Switching lpv based on simplified model is Improvements in generator speed and power 3
Submersible utilized. regulations are key enhancement .
NMPC (CBP) [27] Sandner Model Spar-buoy NMPC based on CBP mechanism and generator ~ Enhanced performance in terms of rotor 3
torque is employed. regulation, platform motion minimization and
improved loads. However, the computational
cost is significantly higher.
N-MPC (IBP) [28] Sandner Model Spar-buoy IBP mechanism is extended based on the Lowered pitch and yaw motion, improved 3
collective blade pitch approach. speed regulation and reduction of the loads on
blades.
Linear - MPC (CBP)  Sandner Model Modified Linear-MPC based MIMO system is deigned Speed and generated power regulation. 2,3
[29] Spar using CBC approach. Improved negative platform pitch motions.
LIDAR (FF-CBPC) FAST TLP Feedforward controller based on CBP Improved speed regulation and minimized the 3
[30] mechanism is introduced for wind speed loads.
regulation.
LIDAR (FF-CBPC) FAST Spar-buoy CBP FF controller is formulated based on ideal  Improved rotor speed and power regulation, 3
[31] wind speed estimation. along with blades, rotor, and tower load
reductions.

designers to include the constraints on inputs and states in the control
design, thus effectively avoiding physical saturation. However, MPC is
a computationally demanding control mechanism for complex systems,
such as FOWTs. Advanced controllers based on preview information on
incident disturbances are superior alternatives to feedback controllers.
LIDAR is a valuable addition for improving bottom-fixed wind turbines;
however, LIDAR performance is yet to be evaluated for FOWTs ex-
posed to wave disturbances. Details of advanced MIMO controllers are
provided in Table 3.

Mass-spring-damper-based FOWT control methods adequately re-
duce pitching phenomena and wind turbine loads. These control meth-
ods include additional DOFs to deal with platform motions and tower
load, unlike blade-pitch control methods. In this way, the controller
mechanisms ease the high blade pitch activity and provide further per-
formance improvement. However, the addition of extra DOFs causes an
increase in the complexity of FOWTs. Moreover, the power required to
generate a heavy stroke in active dampers requires further investigation
regarding cost-effectiveness on an industrial scale. A list of existing
mass—spring—-damper-based FOWT controls is provided in Table 4.
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5.2. Comparison of control algorithms on different platforms

As described earlier, the development of control strategies is usually
co-designed with a specific FOWT system; thus, it is still unknown
which control algorithm has the potential to be the most cost-effective
across generic platforms. Nevertheless, it is worthwhile to develop an
evaluation matrix for load mitigation, power regulation, and platform
motion minimization for each type of generic platform to provide
guidance to technology developers and relevant researchers. Table 5
assesses the benefit of certain advanced MIMO controls to the four
types of platforms by scoring the associated improvement from 1
(decrease in performance) to 5 (massive improvement). Because the
mass-spring—damper-based control is still in the conceptual stage, only
blade-pitch-based control algorithms are considered.

As shown in Table 5, the LQR controller can suppress platform
motion to a certain extent over all four types of platforms, whereas it
has a negative impact on the power regulation of the barge type. This is
because the barge platform has a large moment of inertia in rotational
modes, and thus the low-frequency blade-pitch control action is likely
to lead the platform to achieve its resonance, resulting in a compromise
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in the power regulation. Because feedforward controllers and nonlinear
model predictive controllers utilize predictions to manipulate the sys-
tem’s dynamics, they can result in a significant improvement in power
regulation and platform motion suppression. However, as nonlinear
model prediction usually leads to a heavy computational burden, the
corresponding cost could significantly increase. H-Infinity controllers
have almost identical performance to LQR controllers over the given
platforms, because their conservative nature tends to choose subop-
timal control actions. Regarding SLPV controllers, owing to a lack of
information, their excellent performance in power regulation and plat-
form motion suppression can only be confirmed for semi-submersible
platforms.

Overall, one can say that the nonlinear model predictive controller
is the most preferable for generic platforms. The main concern of
computational loading can be addressed by using high-performance
cluster computing or a learning-inspired method in the near future.

5.3. Outlook and potential improvements

The majority of control mechanisms were developed using model-
based design. In complex systems such as FOWTs, accurate system
modeling is essential for dealing with model uncertainties and complex
incident disturbances, such as wind and waves. In an ideal situation, the
plant represents the actual systems and actuators, whereas in reality,
it is only a fair approximation of the system. Model-based FOWT
models are generally a reasonable choice for designing controllers, as
shown in Section 3.2; however, they may require considerable effort
for controller synthesis and tuning. Model-based system models are
usually designed based on approximations, which may result from a
poor understanding of the system and unmodeled dynamics, leading
to a compromise in system performance. In this case, the model-free
control approach may be utilized to represent the plant model and
deal with the aforementioned shortcomings not addressed by first-
principles mathematical modeling. Input-output data may be used to
deduce a plant representation for the respective controller design after
careful assessment and performance evolution. Unlike model-based
design, data-driven model-free controllers do not rely on the system
characteristics, eliminating the need for controller dependency on the
plant model. Furthermore, unlike the model-based control approach,
in model-free methodologies, system stability does not rely on model
accuracy [121]. ML techniques may address this issue by finding the op-
timal control laws by mapping the output of the sensors to control the
actuators. These techniques are based on bio-inspired computational
methods, including genetic algorithms, reinforcement, and iterative
learning [122]. These algorithms may be used to minimize constraint-
based cost functions designed according to the control objectives. One
such example of machine learning control (MLC) usage for complex
structures such as FOWTs has been reported in the literature [123].
The input-output data are correlated to form a control law u = k(y) and
evaluated using a cost function J, as shown in the schematic in Fig. 8.
It shows improved performance compared to the baseline controller
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and demonstrates a viable solution for further research on the complex
control synthesis of FOWTs.

The complex nature of the incident wind and wave limits the control
design for FOWTs. Instantaneous changes in these disturbances, such
as wind and wave gusts, may affect the design of control methods
for FOWTs. Moreover, if not considered, the stochastic nature of these
flows may also degrade the structural life and performance of wind
turbines. Incoming disturbances may be modeled to circumvent these
issues. However, it is challenging to design perfect mathematical mod-
els of incident wind and waves, owing to their inherently complex
properties and high dimensionality. Data-driven ML plays a promising
role in solving complex real-life problems. Dynamic mode decompo-
sition [124], sparse identification of nonlinear dynamics [125], and
Koopman operator theory [126] are data-driven methods that may
be used to understand complex turbulent flows and interpret the un-
derlying behaviors. Simplified models of the incident wind and wave
disturbances may improve the incoming disturbance prediction and es-
timation process based on these techniques. The LCOE of large FOWTs
can be reduced by better understanding the effect of incident dis-
turbances on FOWTs and subsequently implementing efficient control
design.

6. Summary

In this article, we have thoroughly presented a range of control
algorithms for FOWT system dynamics, including blade-pitch type and
mass-spring—-damper type. Blade-pitch-based control methods utilize
existing FOWT actuators to achieve platform-associated motion sup-
pression, power regulation, and load mitigation. Mass-spring control
methods are based on the addition of extra actuators to deal with
platform motions, power generation, and load minimization issues. Al-
though, these control methods decouple the use of blade-pitch actuators
that compete for platform motion suppression and rotor regulation, the
increased system cost and complexity are the main obstacles for their
practical application. Furthermore, it was found that the integration
of model prediction into blade pitch-based control usually leads to a
significant improvement in power regulation and load mitigation over
all types of platforms, highlighting the importance of wind and wave
forecasting. Finally, model-free control and learning-inspired control
may be potentially viable solutions to the complex operational scenario
of the FOWT in the future.

Based on the understanding of the existing methods discussed ear-
lier, we tentatively make some recommendations for future analysis:

+ Experimental validation of the blade-pitch control methods with
complex wind and wave environment is suggested. Further, it
is recommended to benchmark the performance of these control
methods across different floating platforms.

» Mass—spring—damper-based FOWT control methods may be fur-
ther investigated as a viable solution for pitching phenomena and
wind turbine loading. Their ability to minimize platform pitching
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Table 4
Advanced FOWT control methods based on Mass-spring—damper mechanism.
Control methods Model Platform Description Economic viability OR
Active and passive FAST-SC Barge/ TMD placed in the nacelle, H-infinity based Reduced tower loading, Increased complexity 2,3
TMD [36] Bottom-fixed  loop shaping controllers. and power consumption due to active-TMDs.
monopole
Improved Active FAST-SC Barge Nacelle based redesigned TMDs taking actuator  Fore-aft loads reduction and tower base 2,3
and passive TMD model into consideration. bending minimization.
[79]
Optimal Passive FAST-SC Mono-pile, Optimal passive TMD is developed based on Fatigue loads are found reduced for barge and 2,3
TMD [80] barge , available platforms using genetic algorithm. mono-pile better than the TLP and Spar buoy.
Hywind
spar-buoy
and TLP
Semi active TMD FAST-Orcaflex Mono-pile Nacelle based semi-active TMD. Minimized side-to-side tower loading of 2,3
[81] and TLP mono-pile and slackline incidents of TLP.
(Pelastar)
Active TMD [82] FAST-SC Barge Platform-based TMD, A static output-feedback Fatigue load and generator power error is 2,3
mechanism is proposed using a generalized reduced while reliability and robustness issues
H-infinity control of controller designed are found.
TLD [83] Numerical methods Spar-buoy Nacelle based single and multilayer TLDs are Enhanced platform pitching motion based on -
examined and validated. Multilayer TLD than single layer TLD.
Passive TMD [84] FAST-SC Barge TMD placed in nacelle, Inerter based damping Effectively reduced wind and wave induced 2
mechanism. loads in comparison with similar conventional
TMD control.
Active Mooring line  FAST TLP STAM-integrated mooring lines. Platform motions (pitch and roll) and tower 2,3
control based on bending moment, are minimized.
STAM [85]
Table 5
Performance comparison of advanced (MIMO) control schemes compared to baseline controller.
Control method Platform type Tower Loads Power regulation Platform motions Cost
LQR-IBPC Barge 3 1 3 2
LQR-IBPC-DAC 3 1 3 2
LQR-IBPC TLP 2 3 3 3
LQR-IBPC-DAC 2 4 4 5
LQR-IBPC 2 3 3 3
LQR-IBPC-DAC 2 4 2 3
FF-CB Spar-buoy 2 5 2 4
NMPC-CBP 2 5 3 5
NMPC-IBPC 2 5 3 5
;IL'L"&'(':‘S:CBP Semi-Submersible 2 i 2 3

5=Massive improvement; 4=Major improvement; 3=Minor improvement;2=Slight improvement; 1=Decrease in performance.

phenomena without using blade pitch can provide designers with
more freedom to design controllers. However, a cost-effective
approach and subsequent validation studies are required.

The effectiveness of preview devices such as LIDAR for FOWTs
needs to be experimentally validated. Moreover, the inclusion of
combined wind and wave prediction in the control design may
elevate advanced control mechanisms, such as MPC.

Further development is suggested regarding the use of predic-
tion algorithms together with the use of physical devices such
as LIDAR. Models based on ML tools would be of significant
advantage in lowering the LCOE by understanding the underlying
disturbance behaviors and designing optimal control laws.
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Appendix A. Wind turbine

The working principle of the wind turbine deployed offshore is
similar to the land-based wind turbines, which utilizes the blades to
extract the kinetic energy from airflow and then convert the mechanical
power into electrical power. The theoretical maximum efficiency of
power harvested from wind is 59.3%, known as the Betz limit [127].
Maximum power (P,,,.) generated by a wind turbine in this scenario
(see Fig. A.1) can be formulated as,

1
Puaax = 50A0*Cy(4, B) (A1)
1= 2R (A.2)
U
where

+ p= Air density

* A= Swept Area

*+ C, = Power coefficient (based on tip-speed ratio (1) and blade
pitch angle p)

* R= Rotor radius

* Q= Angular speed

» v= Wind speed
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Fig. A.1. Wind energy extraction using wind turbine.

Appendix B. Simulation codes and models for FOWTs

The existing system models designed for the bottom-fixed wind
turbines may not be able to reflect the dynamics of the FOWTs due to
the complaint nature of FOWTs. Therefore, a system model is required
to simulate the FOWTs that incorporates all the significant DOFs,
including the floating base. A brief description of some of the major
simulation codes used is given below.

Fatigue, Aerodynamics, Structures, and Turbulence (FAST)

The National Renewable Energy Lab (NREL) has designed a modular
computer-aided engineering (CAE) open-source software Fatigue, aero-
dynamics, structures, and turbulence (FAST) to simulate wind turbines
at a given operating condition [128]. FAST uses a multi-body/modal
system (MBS) representation. The aerodynamics module is based on
the blade element momentum (BEM) theory (quasi-static). At the same
time, the hydrodyn modules offer modeling based on Potential flow and
Morison’s equation. Furthermore, models based on FAST can generate
linearized models useful for the linear control design.

The widely-used standard multi-megawatt fictitious FOWT model,
designed based on FAST is NREL 5MW baseline WT [55]. This utility-
scale WT is developed based on the publicly available data of existing
WTs and simulation models such as WindPACT [129], RECOFF [130],
and DOWEC [131].

Horizontal Axis Wind Turbine Code-Second generation (HAWC2)

Horizontal Axis Wind Turbine Code-Second generation (HAWC2) is a
time-domain commercial package that is mainly used to study the dy-
namics of fixed bottom WTs operating under externals loads [132]. The
structural dynamics is based on MBS, and the aerodynamic module re-
lies on BEM theory. The WT with a floating base is simulated using the
SIMO/RIFLEX code coupled with HAWC2 [54], where SIMO/RIFLEX is
used to model the floating foundation and mooring lines, whereas the
rotor, blades, and nacelle are designed in HAWC2.

A next-generation 10 MW reference WT based on HAWC2 [133]
similar to 5 MW baseline WT [55] is also available for the research
and development.

Bladed

Bladed is a commercial software to simulate WTs for both onshore
and offshore sites [134]. The FOWTs may be modeled using Bladed by
considering the dynamics and the complexity of the system parameters.
Bladed code also considers incident wave and wind loads, structural
dynamics, aerodynamics, and suitable controller response.
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Fig. B.1. Adapted layout of Betti model [137].

The structural dynamics of the Bladed code are based on the multi-
body modal system representation. The aerodynamic module uses both
the momentum and blade element model. Simultaneously, an extended
version of this model considers the effect of Prandtl’s tip and root losses,
dynamic wake models, and Glauert skew wake. The hydrodynamic
module utilizes the penal method and Morison equation. With a built-in
LIDAR module, Bladed code may be used to develop advanced control
designs based on the LIDAR preview information. The Bladed code can
generate the linearized model and state-space matrices, an essential
part of linear control theory.

As a part of LEANWIND project [135] an 8 MW reference WT [136]
is designed based on data available online of WTs and validated using
Bladed.

SIMPACK

SIMPACK code is designed to simulate a range of industrial ap-
plications such as robotics, automotive aerospace, and railway sys-
tems [138]. It a general-purpose software based on MBS and is ap-
plicable for the WTs as well. An extension to the existing code is
used for FOWT, connecting HydroDyn and SIMPACK with the help of
SIMHydroDyn [139]. These additional modules are to deal with the
hydrodynamics and the mooring lines of FOWTs.

A comparison of the parameters and properties of the 5 MW, 8 MW
and 10 MW reference wind turbines is given in Table B.1.

Simplified models

Complex simulation codes like FAST are considered an appropriate
choice to study the systems behavior, platform stability, and power
quality under external disturbances. However, the complex nature of
these models may cause problems in the control design process. To
circumvent shortcomings associated with the complex models, a simple
yet accurate model can be developed to model the essential dynam-
ics and behavior of a FOWT with high accuracy. The effectiveness
of simplified models for FOWTs in designing useful controllers has
been proven [137]. To facilitate the simple control design process,
researchers have produced simplified FOWT models. Below are a few
noticeable models available in the literature.
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Table B.1
Summary of 5, 8 and 10 MW reference wind turbines.
Turbine Name NREL (5 MW) LEANWIND (8 MW) DTU (10 MW)
Number of blades and rotor orientation 3 blades, Upwind 3 blades, Upwind 3 blades, Upwind
Rotor Diameter (m) 126 164 178.3
Tower and Hub height (m) 90, 87.6 110, 106.3 119, 115.6
Cut in, cut out and rated wind speed (m/s) 3, 25, 11.4 4, 25, 12.5 4, 25, 11.4
Rotor speed range (rpm) 6.9, 12.1 6.3, 10.5 6, 9.6
Hub Nacelle and blade mass (tons) 56.8, 240, 17.7 90, 285, 35 105.5, 446, 41.7
Table B.2
Model comparison of existing FOWTs controllers.
Model Nature DOFs Incorporates incident wind/wave in controller synthesis
Jonkman [128] Flexible 3-D 22/24 Wind only
Betti [140] Rigid 2-D 7 Wind and Wave
Sandner [68] Flexible 3-D 18 Wind and Wave
Homer [57] Rigid 3-D 15/16 Wind and Wave
Rotor
Nacelle

—

Platform

Fig. B.2. Adapted layout of Sander model [68].

Betti model. To address the complexity of the existing simulation mod-
els for the FOWTs, a simplistic control-oriented 2-D rigid model is
proposed by Betti et al. [140]. Betti model is designed with 7 states,
where the incident wind and wave disturbances are considered acting
in 2-D plane. The schematic of this model is given in Fig. B.1. This
model may also generate linearized models at various locations within
the operating domain. Unlike FAST, this model may also be used to
calculate the wave disturbance matrix, which provides the incident
wave information into the advanced control design process. The Betti
model is used for the controller synthesis on a TLP based 5 MW FOWT
considering 2-D incident disturbances. However, it was found that the
model had a small effect on the platform motions and generated power
despite the accurate 2-D motion representation [137,140].

Sander model. Sandner et al. [68] proposed a reduced FOWT model
for a spar buoy platform as shown in Fig. B.2. The states of this
model includes platform motion, rotor speed, nacelle movement, and
pitching angle of the blades. The Sander model has a 2-D structure
similar to Betti model [140] and its performance is found accurate
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Fig. B.3. Adapted layout of Hommer model.

when compared with the complex FAST model. However, Sander model
may not be suitable to study FOWT based on other platforms because it
is designed for a spar boy platform, where there is less hydrodynamic
complexity involved due to its unique geometry. Moreover, Sandner
model is only used for the 2-D disturbances, and its effectiveness in a
3-D scenario is yet to be assessed.

Homer model. Homer et al. [57] proposed a simple but effective
control-oriented 3-D design for advanced control synthesis of a FOWT,
as shown in Fig. B.3. Like other similar models, the Homer model also
has fewer DOFs (15/16), and it may also be used to generate linearized
models at a given operating point. The model is capable of reflecting
3-D motion, and assist controller synthesis to eliminate or reduce the
effect of wind and wave disturbances. Furthermore, the Homer model
also comes with an ability to generate wave disturbance matrix.

The simplified models are compared with complex model FAST in
terms of their particular characteristics in Table B.2.
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